PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: December 22, 2006
REVISED: March 6, 2007
ACCEPTED: March 19, 2007
PUBLISHED: April 3, 2007

Antenna subtraction with hadronic initial states

Alejandro Daleo

Institute for Theoretical Physics, ETH,
CH-8093 Ziirich, Switzerland
E-mail: daleo@itp.phys.ethz.ch

Thomas Gehrmann and Daniel Maitre

Institut fur Theoretische Physik, Universitat Zirich,
Wintherturerstrasse 190, CH-8057 Ziirich, Switzerland
E-mail: |thomas .gehrmann@physik.unizh. CH, Inaitreda@physik .unizh. CH

ABSTRACT: The antenna subtraction method for the computation of higher order correc-
tions to jet observables and exclusive cross sections at collider experiments is extended to
include hadronic initial states. In addition to the already known antenna subtraction with
both radiators in the final state (final-final antennae), we introduce antenna subtractions
with one or two radiators in the initial state (initial-final or initial-initial antennae).
For those, we derive the phase space factorization and discuss the allowed phase space
mappings at NLO and NNLO. We present integrated forms for all antenna functions
relevant to NLO calculations, and describe the construction of the full antenna subtraction
terms at NLO on two examples. The extension of the formalism to NNLO is outlined.
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1. Introduction

The calculation of perturbative higher-order corrections to exclusive observables (especially
jet production cross sections, but also transverse momentum or rapidity distributions) re-
quires a systematic procedure to extract infrared singularities from real radiation contribu-
tions. These singularities arise if one or more final state particles become soft or collinear.
For the task of next-to-leading order (NLO) calculations [fl] several systematic and process-
independent procedures are available. Except for the phase space slicing technique [J], all
these methods [~ f]] work by introducing additional terms, that are subtracted from the



real-radiation matrix element at each phase-space point. These subtraction terms approx-
imate the matrix element in all singular limits, and are sufficiently simple to be integrated
over part of the phase space analytically. After this integration, infrared divergences of the
subtraction terms are made explicit, and the integrated subtraction terms can be added
to the virtual corrections, thus yielding an infrared-finite result. One of these subtraction
methods is antenna subtraction [B, ff], which constructs the subtraction terms from so-called
antenna functions. These antenna functions describe all unresolved partonic radiation (soft
and collinear) between a hard pair of radiator partons.

Extensions to next-to-next-to-leading order (NNLO) are discussed in the literature for
phase-space slicing [f], and for several subtraction methods [J-[[4]. A completely inde-
pendent approach, avoiding the need for analytical integration is the sector decomposition
method, which has been derived for virtual [[5] and real radiation [If] corrections to NNLO,
and applied to several observables already [17]. Among the subtraction methods, only the
NNLO formulation of the antenna subtraction method [[l4] has been worked out to a suffi-
cient extent to be readily implemented in the calculation of NNLO corrections to a physical
process. Using this method, the calculation of ete™ — 3 jets at NNLO accuracy is cur-
rently under way [1§]. However, up to now, the antenna subtraction (both at NLO and
NNLO) method was developed only to handle unresolved singular radiation off final-state
partons. An extension to radiation off initial state partons has been missing so far for this
method, while all other NLO subtraction methods could handle radiation off initial- and
final-state particles.

It is the purpose of this paper to extend the antenna subtraction method to include
radiation off initial state partons, so that it can be used in the calculation of higher order
corrections to processes at lepton-hadron or hadron-hadron colliders. In section [}, we
recall the structure of antenna subtraction terms and describe their systematic derivation.
Antenna subtraction for radiation off final state partons was formulated already in [, [, [4]
and is briefly summarized in section . In sections [] and [, we present a detailed derivation
of antenna subtraction for situations with one or two radiator partons in the initial state.
In these sections, we provide all necessary ingredients for an implementation at NLO, and
discuss the extension to NNLO. To illustrate the application method, we describe two NLO

examples in section . Finally, section f§ contains conclusions and an outlook.

2. Antenna subtraction

To obtain the perturbative corrections to a jet observable at a given order, all partonic
multiplicity channels contributing to that order have to be summed. In general, each
partonic channel contains both ultraviolet and infrared (soft and collinear) singularities.
The ultraviolet poles are removed by renormalisation in each channel. Collinear poles
originating from radiation off incoming partons are an inherent feature of the incoming
partons, and are cancelled by redefinition (mass factorization) of the parton distributions.
The remaining soft and collinear poles cancel among each other only when all partonic
channels are summed over.



While infrared singularities from purely virtual corrections are obtained immediately
after integration over the loop momenta, their extraction is more involved for real emission
(or mixed real-virtual) contributions. Here, the infrared singularities only become explicit
after integrating the real radiation matrix elements over the phase space appropriate to the
jet observable under consideration. In general, this integration involves the (often iterative)
definition of the jet observable, such that an analytic integration is not feasible (and also
not appropriate). Instead, one would like to have a flexible method that can be easily
adapted to different jet observables or jet definitions. Therefore, the infrared singularities
of the real radiation contributions should be extracted using infrared subtraction terms.
The crucial points that all subtraction terms must satisfy are that (a) they approximate
the full real radiation matrix elements in all singular limits and (b) are still sufficiently
simple to be integrated analytically over a section of phase space that encompasses all
regions corresponding to singular configurations.

For NLO calculations, several different methods are available to derive subtraction
terms in a process-independent way [{, fl, B, [, [ One of these methods is the so-called
antenna subtraction [}, fj.

In this method, antenna functions describe the colour-ordered radiation of unresolved
partons between a pair of hard (radiator) partons. All antenna functions at NLO and
NNLO can be derived systematically from physical matrix elements, as shown in [[14, [L9].
They can be integrated over the factorized antenna phase space [J] using loop integral
reduction techniques extended to phase space integrals [R0, 1], and then combined with
virtual corrections to partonic processes with lower multiplicity.

Up to now, antenna subtraction has been formulated at NLO [, f] and NNLO [[[4]
only for processes with a colourless initial state. In this case, both radiator partons are
in the final state, we call this situation a final-final antenna. For collider observables
involving hadronic initial states, there can be either one or both partons in the initial
state. Unresolved radiation off these initial state partons can also be subtracted using
antenna functions, with one or two radiators in the initial state. We call these initial-final
and initial-initial antennae. The radiated parton is always in the final state. Figures [j
illustrate how a single unresolved parton can be emitted between radiators in the final or
initial state, and show how all these situations are factorized into antenna functions. Each
antenna contains both collinear limits of the unresolved parton with either radiator as well
as the soft limit.

In each situation, the subtraction term is constructed from products of antenna func-
tions with reduced matrix elements (with fewer final state partons than the original matrix
element), and integrated over a phase space which is factorized into an antenna phase
space (involving all unresolved partons and the two radiators) multiplied by a reduced
phase space (where the momenta of radiators and unresolved radiation are replaced by two
redefined momenta). These redefined momenta can be in the initial state, if the corre-
sponding radiator momenta were in the initial state. The full subtraction term is obtained
by summing over all antennae required for the problem under consideration. In the most
general case (two partons in the initial state, and two or more hard partons in the final
state), this sum includes final-final, initial-final and initial-initial antennae.



Figure 1: Antenna factorization for the final-final situation.

Figure 2: Antenna factorization for the initial-final situation.

Figure 3: Antenna factorization for the initial-initial situation.

To specify the notation, we consider the hadronic cross section
dg dE
Z [ a6 fal) (s o). (2.1)

where £ and & are the momentum fractions of the partons of species a and b in both



incoming hadrons, with f being the corresponding parton distribution functions and Hj o
denoting the incoming hadron momenta. The cases of only one or no incoming hadrons
are obtained trivially by replacing the relevant f(£) by 6(1 — £). The dependence of the
parton-level cross section dé on the parton species a, b is obvious, and not stated explicitly
for ease of notation. It should be noted that the parton level cross section dé is normalized
to the hadron-hadron flux factor, which is transformed into the parton-parton flux factor
by dividing out &; and &» in the above.

We define the partonic tree-level n-parton contribution to the m-jet cross section (for
tree-level cross sections n = m; we leave n # m for later reference) in d dimensions by,

d6(p1,p2) = N Y _d®p(k1,. .., knip1,p2)

1
XS_ |Mn(kla .. 'akn;plap2)|2 JT(Y?)(kla .. akn) (22)

The definition of the observable JTS? )(kl, ..., k) can depend on Hj o (for example through
cuts on the jet rapidities), although this is not stated explicitly here. The normalization
factor N includes all QCD-independent factors as well as the dependence on the renormal-
ized QCD coupling constant c, ), denotes the sum over all configurations with n partons,
d®,, is the phase space for an n-parton final state with total four-momentum p} + pi in
d = 4 — 2¢ space-time dimensions,

dd_lkl dd—lkn J d
d@n(/ﬁ,---,knmlam) = 2E1(27T)d_1 2En(277)d_1 (27T) 0 (p1+p2_k1_"'_k")’
(2.3)

while S, is a symmetry factor for identical partons in the final state. |M,[? denotes

a squared, colour-ordered tree-level n-parton matrix element. Strictly speaking, only
the leading-colour contributions to squared matrix elements can be written in this form.
Colour-subleading contributions to squared matrix elements are in general obtained by mul-
tiplying two linear combinations of colour-ordered amplitudes, such that one or more of the
external gluons are effectively replaced by photons. For the sake of identifying potentially
singular limits, they can be treated in the same way as the leading colour pieces [[[4]. To
keep the notation simpler, we denote these subleading colour contributions also as |M,,|?,
although they are not necessarily squares of single amplitudes.

Antenna subtraction terms do® are constructed using parton-level antenna subtraction
terms d&° as in (2.1)), such that

do — do®

is finite in all unresolved limits, and that phase space integrals contained in it can be carried
out numerically.

In the following, we will briefly summarize the features of antenna subtraction in the
final-final case, and derive the antenna phase spaces and antenna functions for the two
other cases.



3. Final-final configurations

In configurations involving final-final antennae, both radiators are in the final state. This
case was described previously in detail at NLO [H, ] and NNLO [4]. The NLO subtraction
term for an unresolved parton j, emitted between hard final-state radiators ¢ and k is
depicted in figure . It reads

1
Serl

dgUD (py,po) =N > d®psa (i, .. kms1;p1.p2)
m+1

X Z X0 M (b1, K1, Kie kg p,p2) P TS (e, o K K k)
J

(3.1)

The subtraction term involves the m-parton amplitude depending only on the redefined on-
shell momenta k1,..., K7, Kk, ..., kyny1 where Ky, Kk are linear combinations of k;, k;, ky,
while the tree antenna function Xiojk depends only on k;, kj, ky. X?jk describes all of the
configurations (for this colour-ordered amplitude) where parton j is unresolved.

The jet function J,S,Lm) in (B.2) does not depend on the individual momenta k;, k; and
k., but only on K, Kg. One can therefore carry out the integration over the unresolved
dipole phase space appropriate to k;, k; and kj analytically, exploiting the factorization of

the phase space,

d®pi1 (ks .- k1301, 02) = (3.2)
dq)m(kl,. LK, Ky, .. .,km+1;p1,p2) . d(I)Xijk(/{?i,/{?j,/{?k;K] + KK,O) .

The NLO antenna phase space d®x, , is proportional to the three-particle phase space
relevant to a 1 — 3 decay.

At NNLO, one has to consider the emission of one parton in a one-loop corrected
process, or the emission of two partons at tree level. Both these were described in detail
in ref. [I4]. While the one-loop antenna subtraction is largely an extension of the above
with the replacement of the tree-level antenna function by a one-loop antenna function,
XY — X1 several new features appear in the subtraction of two unresolved partons at
tree-level.

In particular, one must pay attention to the colour-connection of the two unresolved
partons. If they are colour-unconnected or almost colour-unconnected (sharing a common
radiator), the subtraction term is obtained by iterating the procedure employed at NLO,
now yielding products of two antenna functions. If both unresolved partons j, k are colour-
connected, new four-parton antenna functions X;;i; appear in the subtraction terms:

1
/\/E d®yi2(k1, - .o s kmto; p1,2) E X
m+2 Sm+2 Jk

XM (koo K Ky ke p1p2) P TS (ks K KLy kmae) |

where the sum runs over all colour-adjacent pairs j, k and implies the appropriate selection
of hard momenta i,l. As before, the subtraction term involves the m-parton amplitude



evaluated with on-shell momenta ki,..., Ky, Ky,...,kypyo where now K; and K are a
linear combination of k;, kj, ki and k;. As for the NLO antenna of the previous section,
the tree antenna function XZQJ. i depends only on k;, kj, ki, k;. Particles ¢ and [ play the role
of the radiators while j and k are the radiated partons.

Once again, the jet function J&m) in the above equation depends only on the parent
momenta K, Ky and not k;, ..., k;. One can therefore carry out the integration over the
unresolved antenna phase space (or part thereof) analytically, exploiting the factorization
of the phase space,

d®pia(ki, ..o kmyoip1,p2) = (3.3)
d®,,(k1,..., K1, Kp, ..., kmy1;01,02) - d®x, ., (ki, kj, ki, ki; Kr + K1, 0) .

ijkl

This phase space factorization must be carried out such that all unresolved limits are
reproduced correctly. The most general parameterization for this case is derived in ref. [g.
It should be noted that d®x,,, is proportional to the 1 — 4 parton phase space; the
analytical integration of the antenna functions over this phase space can thus be carried
out with standard methods [Rd, R1].

4. Initial-final configurations

In the presence of hadrons in the initial state, matrix elements exhibit singularities that
are not accounted for by the subtraction terms discussed in the previous section. These
singularities are due to soft or collinear radiation within an antenna where one or the two
hard partons are in the initial state.

As discussed in [[[4], the terms necessary to subtract singularities associated with col-
ored particles in the initial state can be simply obtained by crossing the corresponding
antennae for final state singularities. Due to the different kinematics involved, the factor-
ization of phase space is slightly more involved and the corresponding phase space mappings
are different. To cancel explicit infrared poles in virtual contributions and in terms arising
from parton distribution mass factorization, the crossed antennae must be integrated, an-
alytically, over the corresponding phase space. In this section we will present the antennae
and phase space mappings to subtract singularities when only one of the radiating partons
is in the initial state.

4.1 Subtraction terms for initial-final singularities

Subtraction terms in the case of one hard parton in the initial state are built in the same
fashion as for the final-final case (formula (2.5) in [[4]). We have the following subtraction
term associated to a hard radiator parton ¢ with momentum p in the initial state:

‘ 1
de ) (p,r) =N E d®p,1(k1, - kmy1;p,7) (41)
— Serl
XY XD My, Ky ks ap )P IS (ke Kk K

J



The additional momentum r stands for the momentum of the second incoming particle,
for example, a virtual boson in DIS, or a second incoming parton in a hadronic collision
process. This contribution has to be appropriately convoluted with the parton distribution
function f;. The tree antenna X' ik depending only on the original momenta p, k; and
kp, contains all the configurations in which parton j becomes unresolved. The m-parton
amplitude depends only on redefined on-shell momenta ki, ..., Kg,..., and on the mo-
mentum fraction x. In the case where the second incoming particle is a parton, there
is an additional convolution with the parton distribution of parton r and corresponding
subtraction terms associated with it.

The jet function, J,E,Lm), in ([1) depends on the momenta k; and kj only through Kp.
Thus, provided a suitable factorization of the phase space, one can perform the integration
of the antennae analytically. Due to the hard particle in the initial state, the factorization
of phase space is not as straightforward as for final-final antennae. We start from the
(m + 1)-particle phase space

A® 1 (k1, .. kg por) = (2m)46 (r +p— Z kl> H[dkl] (4.2)

l l

where [dk] = d%k 6t (k?)/(2m)% 1. We insert

1=/ddq5(q+p—/€j—kk), (4.3)
and )
dx
1= [ 2 [l ot o - Kio) (1.4
T x
with Q2 = —¢?. Finally, integrating over ¢, the phase space can be factorized in an m-

parton phase space convoluted with a two particle phase space:

d®,,41(k1, . kg1 o) = d®p(ke, oo Ky o ooy k1520, 1)
Q2 dx
d(I)Q(kja k; p, ) . (45)
Replacing the phase space in ([L.1), we can explicitly carry out the integration of the antenna
factors over the two particle phase space. When combining the integrated subtraction terms
with virtual contributions and mass factorization terms, it turns out to be convenient to
normalize the integrated antennae as follows

1 Q?
where
€ e_e’YE
C(e) = (4m) 52 (4.7)

The integrated form of the subtraction term is then

65D () = 33

m+1 j
><|/\/lm(k:1,...,KK,...,k:m+1;xp,r)|2<]7§1m)(k1,...,KK,...,ka). (4.8)

S () Z]k( )dCI) (kl,...,KK,...,km_H;.%'p,T)
m+1



Finally, the subtraction term has to be convoluted with the parton distribution functions to
give the corresponding contribution to the hadronic cross section. The explicit poles in the
integrated form cancel the corresponding ones in the virtual and PDFs mass factorization
contributions. To carry out the explicit cancellation of poles, it is convenient to recast,
by a simple change of variables, the integrated subtraction term, once convoluted with the
PDFs, in the following form

- S [ [ (4) g

m+1 j
XC() l]k( ) &B(§1H17§2H2)- (4.9)

This convolution has already the appropriate structure and mass factorization can be car-
ried out explicitly leaving a finite contribution. The remaining phase space integration,
implicit in the Born cross section, d6¥, and the convolutions can be safely done numeri-
cally. When considering reactions with only one incoming hadron, the second PDF has to
be replaced by a Dirac delta. Reactions with two hadrons will require additional subtrac-
tions containing initial-final antennae involving the second parton in the initial state and
initial-initial antennae as well. This case will be discussed in section [] below.

4.2 Phase-space mapping

The proper subtraction of infrared singularities requires that the momentum mapping

satisfy
Tp — p, K — kg when j becomes soft ,
Tp — p, Kg — kj + ki when j becomes collinear with &, (4.10)
xp — p—kj, K — kg when j becomes collinear with i .

In this way, infrared singularities are subtracted locally, except for angular correlations,
before convoluting with the parton distributions. That is, matrix elements and subtraction
terms are convoluted together with PDFs. In addition, the redefined momentum, K,
must be on shell and momentum must be conserved, p — k; — ki, = zp — Kk, for the phase
space to factorize as above.

As discussed, in the case of configurations with two hard radiators in the final state,
the three-to-two-parton map of ref. [fJ] is suitable, as it treats both collinear limits symmet-
rically and there is only one mapping describing all the singular configurations contained
in the antennae.

When subtracting initial state singularities, however, the mapping of ref. [[] leads to a
non-factorizing phase space. The decisive point is that this mapping, modified to account
for a particle in the initial state, introduces a new initial state momentum, P as a linear
combination of p, k; and kj. However, as there is no integration over P, the factorization
of phase space would not be complete, because the m-parton matrix elements depend on
P. On the other hand, if P is proportional to p, factorization is granted, in the form of
a convolution between the reduced matrix elements and the integrated antennae, as we
detailed above. In this case, we inmediately obtain the dipole momentum mappings of



ref. [ff], combined into a single mapping interpolating between all singular limits of the
antennae. Explicitly:

815 + S1k — Sjk
815 + S1k
Kig = kj—i—kk—(l—x)p, (4.11)

where s1; = (p — k:j)2, etc. If parton j becomes soft or collinear to parton k, x — 1. If
parton j becomes collinear with the initial state parton ¢, x = 1 — z with z the fraction of
p carried by j.

The mapping in eq. (f.11)) is, in addition, easily generalized to deal with more than
one parton becoming unresolved. The building blocks for the double real radiation in
the initial-final situation are colour-ordered four-parton antenna functions X jz;, with one
radiator parton ¢ (with momentum p) in the initial state, two unresolved partons j, k and
one radiator parton [ in the final state. Starting with the generalization of ([L.3) to three
particles in the final state, and combining with ([.4) we have the following mapping at
NNLO:

815 + S1k + S1 — Sjk — Sji — Ski

815 + S1k + s1
KL:kj—{—k:k—Fk‘l—(l—:C)p, (4.12)

)

where k;, ki, and k; are the three final-state momenta involved in the subtraction term. This
mapping can be obtained from the tripole mapping [R1], B for final-final configurations at
NNLO. It satisfies the appropriate limits in all double singular configurations:

i) j and k soft: = — 1, K, — ki,

i) 7 soft and ky || ki: * — 1, K — ki + Ky,

iii) kj = zp || p and ky, soft: x — 1 — 2, K1, — ki,

iv) kj=zp|pand ki || ki: « = 1 — 2, Kp, — ki + ki,
V) kj |l ki || kir @ — 1, K — kj + ki, + Ky,

vi) kj+kp=z2p|prx—1—2 Ki—k,

where partons j and k£ can be interchanged in all cases.

The construction of NNLO antenna subtraction terms requires moreover that all single
unresolved limits of the four-parton antenna function Xj; ji; have to be subtracted, such
that the resulting subtraction term is active only in its double unresolved limits. A system-
atic subtraction of these single unresolved limits by products of two three-parton antenna
functions can be performed only if the NNLO phase space mapping turns into an NLO
phase space mapping in its single unresolved limits [J].

In the limits where parton j becomes unresolved, we denote the parameters of the

reduced NLO phase space mapping ([.11)) by 2’ and K. We find for ({.19):

,10,



i) j becomes soft:

AT g bk — (1—a)p= K.
S1k + S11

ii) kj H kg, /{:j + ki = Kk

s S11— 8
R 1K +su Kl:.%',, KL—>kK+kl—(1—x)p:K},-
S1Kx + Su

iti) ;= zp || p:

1 _ —
. (1 —2)(s1kx + su) — sk p——_ Ki—kp+h—(1—2')(1—2)p = K.
S1k + su

It can be seen that in the first two limits, the NLO mapping involves the original incoming
momentum p, while in the last limit (initial state collinear emission), it involves the rescaled
incoming momentum (1 — z)p. To subtract all three single unresolved limits of parton j
between emitter partons ¢ and k from X ji;, one needs to subtract from it the product
of two three-parton antenna functions X; ;i - X1 k. The phase space mapping relevant to
these terms is the iteration of two NLO phase space mappings. Analytical integration of
these terms with this mapping will result in a double convolution of both antenna functions
with the reduced matrix element.

Equally, parton k& can become unresolved. Expressing the reduced NLO phase space
mapping by z” and K}. We find for ({.12):

i) k becomes soft:

S1; + 811 — 85
S S TSUTE Ky k- (L—2)p = K
S15 + su

ii) kg, H kj, /{:j + ki = Kk

S S11 — S
- 1K + S11 Kl:.%'”, KLH]{?K‘Fkl_(l_x)p:Kg
S1K + Su

iii) ky, H ky, ki + k, = Kg:

x—>81K+51j_5Kj:m/’, Ki —kk +kj—(1-2)p=K].
S1K + S1j

In all limits, the reduced NLO mapping involves the original incoming momentum p. Con-
sequently, the three single unresolved limits of parton k between emitter partons j and [
can be subtracted from Xj ji; by a product of a final-final and an initial-final three-parton
antenna function X,z - X; j. The phase space mapping relevant to these terms is the
product of an NLO final-final phase space mapping with an initial-final mapping. Inte-
gration of the final-final antenna phase space yields a constant, not involving an extra
convolution, such that these terms appear in the integrated subtraction term only with a
single convolution with the reduced matrix element.

— 11 —



4.3 NLO antenna functions

We now present explicit results for all the antenna functions necessary to subtract infrared
singularities associated with one particle in the initial state. The unintegrated form of
all of them can be obtained from the corresponding expressions for the tree level three
particles antennae in [[4] by appropriate crossing of particles from the final to the initial
state. In the cases where there are different particles in the final state, there are more than
one possible crossing and, thus, more than one corresponding antenna.

The invariants for antenna X, are defined as s = (k;j + k)%, t = (p — kj)?,
u = (p—ki)? and Q? = —¢?, where ¢ = p — k; — k. For the integrated antennae we define
r=Q?/(2p - q). The colour-ordered splitting kernels are given by

P)(@) = 3 6(1 — ) +2Do(x) ~1—x,
pgg)(x) =1—2x+ 227,

2
pgg)(x) =——2+x,

pO () = %5(1 —x) + 2Dy (z) + % — 4422 — 227,

1
P p(a) = —50(l —a), (4.13)

where we have introduced the distributions

o0 ()

1—z

The colour-ordered infrared singularity operators are as in ref. [[[4]:

W gy 7 1 3]g o
Iqq (6’ SQQ) - 2F(1 _ 6) _62 + % §R( Sqq) )
&« (1 5
I(l) — _67 _ e _ —€
a9 (€, ng) oT(1 — o) _62 + 3¢ R( ng) )
() I O
Igg (67 899) 2F(1 o 6) _62 + 6e %( 399) ’
1
Ic(zq),F(E’SQQ) =0,

(1) _ e b
L€ 5q9) = 9T(1 — ) 6e R(—sq9)"

I e? 1 e

0.7 (€ Sgg) = STNE) ggﬁ(—sgg)f : (4.14)

Although the antenna functions are obtained by a simple crossing of the antenna functions
for the final-final case, there are some important differences in the decomposition of antenna
functions into sub-antennae. In the final-final case, antenna functions involving a hard
gluon radiating unresolved gluons had to be split into different configurations since any
final state gluon could be identified as the hard radiator. This ambiguity is no longer

present if a gluon is crossed into the initial state, since an initial state gluon is hard by

- 12 —



kinematical constraints. Instead, a different ambiguity appears, since the initial state gluon
can split either into a quark or into a gluon, thus leading to two possible reduced matrix
elements. This ambiguity requires decomposition of the relevant gluon-initiated antenna
functions into sub-antennae according to criteria completely different from the final-final
situation, as will be discussed in section below.

4.3.1 Quark-initiated antennae

We consider first antennae with a quark in the initial state. There is one quark-quark
antenna, given by

1 (2u 2u 2u® t s
="z |+ttt . 4.1
7,99 Q2<s+ t + st +s+t>+0(6) (4.15)
Its integral over the phase space (normalized as in eq. ({.6)) gives
0 1) (2 2—e| 1 (0 7w
Aggq = =23 (Q7) (1 = 2) + (@)™ | =5pgq (#) + | 7 — 5 ) (1 = @) (4.16)
3 3—z2 14z 1+ 22
- ZDO(x) +Di(z) - 5 o log(1 — ) — 20— log(z) + O(G)} )

There are three quark-gluon antennae given by

Do 1 52+52+t2+4t2+4u2+4u2+35t+35u
©99 T (Q2)2\t  u s u s t u t
203 2u 6t
+—+i+—“+6s+9t+9u>+(9(e), (4.17)
su st s
1 2 u?
0 _
Eq,q’(j’ = W <; + : +t+ u) + O(E) y (418)
1 s u?
When integrated over the factorized phase space, they yield
_ 1 67 1 11
Dhyy = (@501 ) + @) | =) + (5 - 57°) 80 -9 - G0l
1 1+ 22
+2D; (z) — T l—z—(14+2x)log(l—x)— T log(z) + O(e)| ,  (4.20)
E0 gy = —ALY (@00 — ) + (@) | 251 ) + 2 Dy(a) — = +Oe)] . (421)
07 = 1. F x 9 z)+3D1@) - o €|, .
_ 1 2 3 (2—-22+2% 1—z
0 _ 2\—e€ 0
o = @) |-gl+ 2= 3 - B o (5 ) vo] .
Finally, there is one gluon-gluon antenna with a quark in the initial state:
1 s wu?
0 _
Gq7qg = —W <? + T) + O(E) y (423)
yielding
_ 1 7 (2 — 22 + 22) l1—x
0 _ 2\—e€ 0
Goq9 = (Q7) [—%pgq) (x) — . +1+ 5 log . +0O(e)| , (4.24)

when integrated over the antenna phase space.
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4.3.2 Gluon-initiated antennae

For gluon-initiated antennae, we find one quark-quark antenna

1 2s 25 22 U t
0
[ e e B B B . 4.2
0 Q2<t+u+tu+t+u>+0(e) (4.25)

Its integrated form is

Ag,qq’ = (@) [—%pgg) (z) — (1 — 2z + 22°)(log(1 — z) — log(z)) + (9(6)] . (4.26)

There is one quark-gluon antenna with a gluon in the initial state

o 1 <u2 u? 4t2+4t2 4s*  4s® | 3tu | 3su

D97‘19 - (QQ)Q

T—i_?—i_s u+u+t+s+7
‘|‘2—t?’+2—53+@+6u+9t+98>+0(6). (4.27)
su tu U
This antenna is singular when the quark or the gluon in the final state becomes collinear
with the initial-state gluon. In the first case it collapses into a quark-gluon antenna and
in the second case into a gluon-quark one. Accordingly, the reduced matrix elements
accompanying these two singular configurations are different. Thus, the antenna must be
split to separate these two configurations. This can be easily done by partial fractioning
in the variables t and u, we obtain

1 1 202 8s%2  6su 453

0
- (= -] 40 4.28
=3 (5 T w00 (428)

and
o 11 2t N 8u? N 8u? | 8s? | Btu 4u? 453
999 2(Q2)2 \ s s t t s st (Q*+s)t
12
42 19t f18u+ 183) +O(e), (4.29)
0

where we have adjusted the names of the antennae so that D; .. now does not contain

9,1]
singularities when j becomes collinear with the initial state gluon. We also changed the
sign of the first sub-antenna and exchanged ¢ and u in the second case to agree with the
definitions given at the beginning of the section. The two sub-antennae can be integrated

over the factorized phase space, namely:

1 3 1
Dg,qg = (Q2) —;pfﬁ?(w) + i 1+ 5(1 —2x + 2:52) log(1 — )
_% (1— 22 + 22%) log(z) + O(¢)] . (4.30)

and

DY = —2L(Q50 — ) + (@) | 5w+ (§ - §7°) 61 -2)

2¢ 6
_ ZDO(x) +Dy(z) — g plz2 J;”UQ — 7 Jog(1— )
—z+22)?
- % log(z) + 0(6)] . (4.31)
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Finally there are two gluon-gluon antennae

go _ 11 <852 8t 8s? Bu? 87  8u’  12st 12su | 12tu

999 = 2(QPE\ T wt s Tttt
46 4ud 483
T D s o+ 24u> +0(e), (4.32)
su st tu

1 T
0 _
Gg,q(j = W (; + :) + O(E) . (4.33)
Their integrated forms are given by:

67 1 4

11
w37 ) 0(1 —z) — —Dy(x)

7y 6

1
vas = —4IG)(Q%)5(1 — ) + (Q°)° [‘;pé%’(@ + (

— 2z + 2% — o8 —x+x2)2
12D (x)_é—iﬁ(l 20+ ) 1og(1_x)_72(i . jx)) log () +O(e) } L (434)
08 45 = —20) 1(Q*)3(1 — 2) + (Q*) [—gé(l — )+ %Dl(x) + % + (’)(6)} . (4.35)

5. Initial-initial configurations

The last situation to be considered is when the two hard radiators are in the initial state.
The subtraction terms necessary to account for singularities associated with these configu-
rations are constructed in terms of initial-initial antennae. At NLO, one unresolved parton
is emitted off these two radiators, as displayed in figure . As before, more final state
partons can be emitted at higher orders.

The initial-initial configuration is slightly more involved than the previous two. Even
though at NLO the integration of the antenna functions over the factorized phase space will
turn out to be trivial, in order to guarantee this factorization, only a very restricted kind
of mapping will be allowed. In addition, to fulfill overall momentum conservation, both
the hard radiators and all the spectator momenta, including non-colored particles, have to
be remapped. This is done with a convenient generalization of the Lorentz transformation
introduced in ref. [{].

5.1 Subtraction terms for initial-initial configurations

The NLO antenna subtraction term, to be convoluted with the appropriate parton distri-
bution functions for the initial state partons, for a configuration with the two hard emitters
in the initial state (partons i and k with momenta p; and ps) can be written as:

~.S, (i1 L
&) — /\/Z d®pr1(k1, .o kjo1, kj ki, - o k1301, 02)
m+1 Serl
B B B ~ 2
Y XbegProp2 k) Min (ko kjon By B 2ap1, 22p2)
j
I (et Ry Kyt B (5-1)

As mentioned, all the momenta in the arguments of the reduced matrix elements and the
jet functions have been redefined. The two hard radiators are simply rescaled by factors
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x1 and zy respectively. The spectator momenta are boosted by a Lorentz transformation
onto the new set of momenta {l;:l, [ # j}. As before, the mapping must satisfy overall
momentum conservation and keep the mapped momenta on the mass shell. In this case,
this turns out to severely restrict the possible mappings.

We start from the (m + 1)-parton phase space

d¢m+1(k17 oo 7km+1§p17p2) = (27T)d5 (pl + p2 — Z kl) H[dkl] (52)
l

l

and insert
- / a%qd?q 5 (py + 2 — kj — q) 6 (z1p1 + w2pa — §) (5.3)

and

1= [ T o0k - Bk a)ldf). (5.4)
I#j
where B is a Lorentz transformation that maps g onto g. We also insert

1= /d$1d$26($1 - £1)6($2 - ﬂ/\j2) (55)

with

1
4 — <812 — 8j2 812 — S15 — 5j2> 2
1 — )
S12 S12 — S15

1

. 812 — S15 S12 — S15 — 8552\ 2

By — ( J J 5 ) . (5.6)
512 §12 — 852

These last two definitions guarantee overall momentum conservation in the mapped mo-
menta and the right soft and collinear behavior, they are derived in detail in section f.3
below. Now we can integrate over the original momenta, k; ,l # j by inverting the Lorentz
transformation. The Jacobian factor associated with this integration is unity, as B is a
proper Lorentz transformation. We also integrate over the auxiliary momenta ¢ and ¢, to
obtain

A®pi1(k1, s kmgrsprpa) = d®m(kr, o ki1, kg, K1 211, wapa)
X(S(Cﬂl — CAﬂl) 5($2 — fQ) [dki]] d:l?l d$2 . (57)

At this point the phase space is totally factorized into the convolution of an m particle
phase space, involving only the redefined momenta, with the phase space of parton j.
Inserting the factorized expression for the phase space measure in eq. (@), the sub-
traction terms can be integrated over the antenna phase space. The integrated form of the
subtraction terms must be then combined with the virtual and mass factorization terms to
cancel the explicit poles in €. In the case of initial-initial subtraction terms, the antenna
phase space is trivial: the two remaining Dirac delta functions can be combined with the
one particle phase space, such that there are no integrals left. We define the initial-initial

integrated antenna functions as follows:
1

Xik,j (1‘1, 1‘2) = % /[d/{?j] 1 X9 5(1‘1 — i‘l) (5(.%'2 — .ﬁ'z) X@'k,j (5.8)
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Substituting the one particle phase space, and carrying out the integrations over the Dirac
delta functions, we have,
eeny

Xik,j (@1, w2) = (QQ)_eﬁ

I (21,72) Q* Xk 5 , (5.9)

with Q% = ¢® = (p1 + p2 — kj)?. The Jacobian factor, J(x1,x2) is given by

r1 29 (1 + 21 29) (14 21)(1 + z2)

—€
J(x1,29) = 1—21) (1—=x _6< > , 5.10
(z1,22) (01 7 22)? (1 —21) (1 —x2) (o1 + 72)? (5.10)
and the two-particle invariants are given by:
r1 (1 —23) xo (1 —2?)
815 = —819————==, Sjg = —819g————=. 5.11
1j e §2 - (5.11)
The integrated subtraction term is then,
y dxy dz
~S,(4) _1_2
dO’ = Z Z Sm+1 C zk ](.%'1,.%'2)
m+1 j

qu)m(kl,... kj_l,/{:j_H,...,km+1;1‘1p1,x2p2)
X Mo (k- gy Kyt kgt 2191, 2ops)
Xjr(nm)(kly---7kj—17kj+17---7km+1)7 (512)

where we have relabeled all /;:, — k;. The final step is to convolute this subtraction term
with the parton distribution functions of the initial state particles. The integrated version
of the subtraction pieces is then combined with the virtual and mass factorization terms
to yield a finite contribution when ¢ — 0. Recasting the convolutions appropriately, the
integrated subtraction term is

-S g e LS L e (5) e (2)

m+1 j
xC(€) X j (21, 22) d67 (1 Hy, & Hy) . (5.13)

5.2 Phase-space mapping

By asking for momentum conservation and phase space factorization, we are severely con-
straining the possible phase-space mappings. The principal origin of this constraint is that
the remapping of both initial state momenta can only be a rescaling, since any transversal

component would spoil the phase space factorization.
The two mapped initial state momenta must be of the form

Py =az1p Py = x9py, (5.14)

so that
=P+ P

is in the beam axis. Since the vector component of ¢ = p1 + p2 — k; is in general not along
the p1 — po axis we need to boost all the other momenta in order to restore momentum
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conservation. The transformation must map ¢ onto ¢. As it must keep all the spectator
momenta, which are arbitrary vectors, on the mass-shell, it must belong to the Lorentz
group. This transformation then fully determines the initial-initial phase-space mapping,
by fixing x1 2 in terms of the invariants.

We consider a candidate Lorenz transformation A(g). It has to map the vector ¢ into
a vector A(q)g = ¢ in the beam axis. From the result ¢ of the transformation, one can read
off z1 and 9 using

2(p1 +p2)q = (21 + 22)512
2(p1 — p2)qd = (2 — x1)s12

yielding
2p2g
Tr1 =
512
oG
o = 21 (5.15)
512

The two equations can be combined to give

o 812 — 815 — 825 ’
512
which can also be derived from the on shell condition ¢> = G%. To ensure that the mapping
has the right soft and collinear limits at NLO it is sufficient to impose A(gq) = 1 for ¢ in
the beam axis.

For the transformation A we take a boost B}.(¢) of appropriate parameter whose
direction is transverse to the beam axis in the rest frame of P and P,. Objects defined in
the rest frame of the new system are denoted by a *. This transformation clearly satisfies
the requirement BJ.(¢) = 1 for ¢ in the beam axis, since then no boost is required to bring
q into the beam axis. By construction, the longitudinal component of ¢ in the rest frame
of P, and P, is conserved, that is

(PL—P)g .. (- P)g

e 1 g LR L 5.16
gz $1$2\/§ gz $1$2\/§ ( )
So that we have
X9S9; — L1514
(22 — 1) = —~L— (5.17)
512
which gives the mapping
P R
Ir1 = s
812 — S1j 512
812 — S15 [S12 — S15 — 525 (5.18)

812 — 525

which was used in (f.) above. It yields the correct soft and collinear limits at NLO:
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i) jsoft: x1 — 1, z9 — 1.
11) kj = zZ1P1 H pP1: 1 = (1 — 2’1), To = 1.
111) kj = Z9P2 H P2 1 = 1, o — (1 - 2’2).

It should be pointed out the transformation is not unique. Possible transformations
are however strongly constrained. If one requires a symmetrical treatment of z1 and xo,
rotations are not allowed as transformation. To show that, we take p; to be transverse to
the beam axis. Bringing q to the beam axis with a rotation will force us to choose to rotate
¢ either towards the p; or the py side. This would favor either x; or xo. The only way
to bring ¢ to the beam axis, without having to choose between x; and x5 is in this case a
boost transverse to the beam axis.

The extension of the phase space mapping to NNLO is trivial. In this case, four-parton
antenna functions Xj; j; require a mapping with two partons, j and k unresolved. The

transformation B7.(q) is unchanged, but now the vector ¢ is given by ¢ = p1 +p2 — kj — ky.
The momentum fractions in (f.) are replaced by

1
R <812 — Sj2 — Skg2 S12 — 815 — S1k — Sj2 — Sk2 + 5jk> 2
1 — )
512 S12 — 815 — S1k

1
. (312_31j — S1k S12 — S1j — S1k — 5j2 —5k2+5jk>2 (5.19)
9 = . .
512 512 — 82 — Sk2

These two momentum fractions satisfy the following limits in double unresolved configu-

rations:
i) j and k soft: z1 — 1, x9 — 1,

ii) 7 soft and kx = z1p1 || p1: ®1 — 1 — 21, 22 — 1,

)
iii) kj = z1p1 || p1r and kg = zop2 || p2: 21 — 1 — 21, 22 — 1 — 29,
iV) kj + k. = z1p1 ” p1: 1 — 1 —21, 0 — 1,

and all the limits obtained from the ones above by exchange of p; with ps and of k; with k.
The factorization of the phase space into an m-parton phase space and an antenna phase
space goes along the same lines as for the NLO case. At NNLO, however, the integration
of the antenna functions over this factorized phase space is no longer trivial.

As in the initial-final case, we also require the NNLO mapping to turn into the NLO
mapping (b.G) if only one parton becomes unresolved. In the limits where j becomes
unresolved between i and k, we denote the parameters of the reduced NLO phase space
mapping by | and z5. We find:

i) j becomes soft:

1
<S12 — Skg2 S12 — S1k — 5k2> 2
rp — =X

—~

)
512 512 — S1k
1

512 — S1k 512 — S1k — Sk2 \ 2 /
332 — — 1;2
512 512 — Sk2
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ii) k‘j H kr., k:j + ki, = Kk

S12 — SK2 S12 — S1K — SK2 \ 2 p
xr1 — =T,

S12 S12 — S1K

D=

=

<812 — S1K S12 — S1K — 5K2> 2
Xro —
512 512 — SK2

I
8
S

i) kj = zip1 || pr:
1
B B B 1 _ 2
T — <(1 z1)s12 — sk2 (1 — 21)510 — (1 — 21)s1 Sk2> =(1—z)a],
S19 S12 — S1k

1

(812 — 51, (1 —21)s12 — (1 — 21)818 — 5k2> :

o — = ,172 .
S12 (1 —21)s12 — 5k2

All other single unresolved limits involving one radiator parton in the initial state follow by
exchange of p; with py or k; with kj. To subtract all unresolved limits of parton j between
emitter partons ¢ and k from Xj j;, one needs to subtract from it the product of an
initial-final antenna function with an initial-initial antenna function X; ;- X7 . Analytic
integration of these terms over both antenna phase spaces results in a double convolution
in the rescaling variables for p; and a single convolution in the rescaling variable for p-.
At subleading colour, j can also become unresolved between i and [. In this case, we
denote the reduced phase space mapping parameters by z} and z§j. The limits read:

i) j becomes soft:

=

812 — Sk2 S12 — S1k — Sk2 \ 2 "
Ty — =Ty,
812 $12 — S1k

—

<S12 — 51k S12 — S1k — 3k2> 2 "

Tro — =T
512 512 — Sk2

ii) kj =zip1 || pr:

1
1 — s (1— —(1- — 512\ 2
2 (( 21)812 — Sk (1 — 21)s12 — (1 — 21) 811 3k2>
S12 S12 — S1k

= (1 - Zl)xllla

1
_ 1— —(1— _ 2
Ty — <S12 S1k ( 21)812 ( Zl)Slk 3k2> _ 36'2'
512 (1 —21)s12 — Sk2

111) k‘j = Z292DP2 H D2:

1
_ 1— s —(1— 2
A <812 sk2 (1 — 22)s12 — 516 — ( Zz)%z) i
5192 (1 — 29)s12 — s1k

1
Ty ((1 —22)s12 — S1ip (1 — 22)s12 — s — (1 — 22)5k2> 2 (1= 29)al.
812 $12 — Sk2

These single unresolved limits are subtracted from Xj; ;. by the product of two initial-initial
antenna functions Xy ;- X7z, 5. Analytic integration of these terms over both antenna phase
spaces results in two double convolutions in the rescaling variables for p; and po.
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5.3 NLO antenna functions

The unintegrated antenna functions necessary to subtract all the singular configurations
at NLO with two initial state hard radiators, can be obtained immediately from the corre-
sponding initial-final ones quoted in section [£.3 by crossing. We have

Xk = Oikg X r» (5.20)

297(1 and qu J and +1 for all other antennae.
The Mandelstam variables of the unintegrated antennae in section [L.J have to be

replaced by s = (p; + pi)?, t = (i — pj)?, u = (pk — pj)*.
Again, the splitting of antenna functions into different sub-antennae is different from

where d;;, ; is an overall sign, which is —1 for D

the two configurations discussed above. For the initial-initial configurations there is no

0
99,9

same two-particle antenna. So Dgg,g is given by the crossing of ([£27). However, in this
0

99, 11as to be split into two subantennae to separate the two collinear

limits present in it. We find:

need to split the quark-gluon antenna D as in all the singular limits it collapses to the

case, the antenna D

0 _ 1o 0
Dgg,q - D91927q + DQQQMI’ (5'21)
such that Dgl g2, contains only the singular configurations when the quark becomes collinear
with gluon gs. Explicitly:
1 s> 4t 4u®  3st 23 3tu
0 _
Dgng’q_W<E+7+T+7+E+T+3S+9u>+O(6)’ (5.22)

As mentioned, the integration of the initial-initial antennae over the factorized phase space
is trivial and only involves a proper treatment of the singularities when ¢ — 0. The

integrated antennae read

.A(q)g,q = (Q*) ¢ [ - %pég) (22) 0(1 — 1)

2
1 1—2w9+ 223 1 — 29 1 — 229 + 223
—|—<2 + 5 log (21+x2>>6(1 xl)—i—Do(xl) 5
_1 — 229 + 223 x1(1 + x122) (21‘11‘% + x% + (295‘21 — Qx% + 1) x%)
2(1 — x1) (z1+ 32)% (1 — 2?)
+x1x2(1 + x129) (23:1 — T gx% + 2zowy — 1))} ’ (5.23)
(x1 + x2)
e 1
Ay = —1(@Q)3(1 = 21)8(1 — ) + (@) [— 2—61?((1?1)(361)5(1 - xg)]
+(Q2)_e [ (CE% + x%) (CE%x% + 23:23:% + ﬂ:% + 3x9x1 + 221 + 1)
2(.%'1 + 1)(.%'2 + 1)(1‘1 + .%'2)2
. ((1 —x1)? — 222 log (H%) + (1 — x%) log <1_2$%)) 0(1 — x9)
2(1 — xl)
1 5 1 1
+m 01— 21)0(1 = 22) = 5 (1 + 22)Po(21) + 5 Po(z1)Do(22)
+5(1 — 1‘1)’1)1(.%’2) + (.%'1 — 1‘2)] , (5.24)

— 21 —



D8, = ~2 (1H(Q*) 6(1 — 21)5(1 — 2)

+QY)| = gorlf o030 = 22) = 3ol w2)a1 — )

—{—%26(1 — I1)5(1 — $2) + 6(1 — $2)D1 (561) + 5(1 — CEl)Dl(xg)

2
1—2 log (:1:1+1) 1+ a2 1—x
+ — log | 2
2 1—x 1 +1

)] a2

1+ x

1
+ (—x% +x2—2+ —) Do(z1) —

+(:U1x2 —1) (@327 + (223 + 2) 23 + (223 — 23 + 4) 2) (w132 + 1)?
1 (1 - 5'31) (x1 + x2)3 (1 - xz)
(x129 — 1) (5:61562 + 256%) (z129 + 1)2
z1 (1 —2?) (z1 + 22)% (1 — 23)
2—x2+2—5 +4—x1x2 (xg—i—xl (w%—kxl—kl) (x2+1)—3)

Dy(2) + Do(21)Do(z2)

_|_
1—x 2x179 (1 — 5'31) (1 — x%)
log< 21> (23 — 23 + 229 — 1) log (21 mﬁ)
+ ALY ARV ¥ TG xl)] , (5.25)
1— 29 €2

2¢
o1 1—2x9+4 223 1—=x
@y (o 22 g (b1 ) 0y

Z2

D21927q - (QQ)*E |: - ipgg) (562)(5(1 - 561)

N (2z9a% + 2f 4 23 (207 — 22% + 1)) (1 + z221)?
(1 — x%) (z2 + 21)4
(4x1x2 + 3 (223 + 21) 23 + (42 + 223 + 1) 23 + 3zi20 + 23) (wowy + 1)
2(29 + 21)*

(227 4 22} — 21 4+ 1) Do(x2) 1 — 229 + 243
* 2(1 + x1)? o 2(1—=) }
1w (1 + 21 29)% (1 — 22)

2(z1 4 x9)*

ura = <Q2>—f[ ) (2101 — ) +

—2x1+ 2 x2($1x2 + 1) ((xlxg — 1).%'% + 2)
2x1(1 — x9) x1(11 + 22)2 (CE% — 1)
(21‘1 + (2 — 221 + 23) log <%> — 2) o(1— mg)}

2I1

(5.26)

ggqq = (@) + (71 < 22), (5.27)

'DQ(.%'Q) (2 —2x1 + x%)
21‘1

+

: (5.28)
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ng = —I%)(QZ)(S(l —x1)0(1 — 22) + (QZ)_e [ B zigpé?(:vl)é(l - 332)]

1 1
—|——7T2(5(1 — 561)(5(1 — 562) + (—CE% + 29— 24 :U_> Do(xl) + 5(1 — $2)D1($1)
2

4
1+ <10g <x22+1) — 1) (azg’ — ﬂ:% + 2x9 — 1) <log (2;;”3))
1-— ) )
1 3 2 (zf — 23 +2) (1 + z122)?
+=Dy(z1)Do(x2) — +
5 Po(@1)Dolaz) 2(1 + z1)(1 + 22) (21 + 22)%
2 1
+x% —x1+2+ @atDa @ Q(x‘ll—i—x%—i— (x%+3)x1+2) (1 + 2129)?
1—129 (1 —22) (21 + 22)*
2
+3 (23 + z1) (@3 4+ 22) (1 + z122) N 2 (35%95‘11 + (23 +1) 21 + m%) (1 + 2129)
(x1 + 22)* (1 + x2)?
221 (22 +3) (1 + 2122)? 1
! ( ! ) ( 142) (L + 2122) + (1 < x9), (5.29)
(w2 + 1) (21 + 22) r1(z1 + zo(z2 + 1)
0 2y—e (L + 21 22)af(1 — w9)* (1 + 22)°
o= 5.30
gqq,g (Q ) (xl T $2)4 + (561 e $2), ( )
e 1
G = ()| = 5o st - 22)
(2(1 —21) = (2— 221 +22) log (2;1*11)) O(1=22)  Dy(ay) (2 — 201 +2)
B 21‘1 + 21‘1
2—2x1 +a7 21+ zwm) (2] 4 2z0mq + (2f — 22F + 2) 23) (5.31)
2$1(1 — xg) 2.%'1(1‘1 + .%'2)3 (1 — x%) ’

6. Singular limits

As discussed above, the antenna subtraction terms are constructed in such a way that they

reproduce the singular behavior of the original matrix elements in all single unresolved

limits. These singular limits might arise when the momentum of a final-state gluon becomes

soft or when the momenta of two particles (at least one of them in the final state) are

collinear. In what follows we list the the singular limits of the antenna functions introduced

in the previous sections. The soft and collinear limits of final-final antennae were already
listed in ref. [[4], and we repeat them here for the sake of completeness. We only list those
configurations leading to singular limits. All other single soft and collinear limits of the

antennae vanish or are finite.

The singular limits of the antennae are written in terms of the soft eikonal factor

2
Sope = —2ac_ (6.1)
SabSbe
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the final-final splitting functions

1+ (1—2)2—e2?

PQ!]"Q(Z) = > )
2+(1-2)2-¢
Pyolz) = =02 2E
z 1-=2
Pog—a(z) = 1_Z+7+Z(1_2)7 (6.2)

and the initial-final splitting functions

1422 — €1 — 2)? 11
quHQ(Z) = (1—e)(1—2)2 = 1_Z1_EPQQHQ(1_Z)a

14 (1—2)?—e? 1

Pog—q(z) = 21— 2) 1 ZquHQ(Z) ’
P2+(1-2)2—€ 1-—¢
Pig—a(z) = 1—2 = 1_qu6—>G(Z)a
2(1 — z + 2?)2 1
Pyg—a(z) = 21— 2)2 — 1= ZP99—>G(Z)- (6.3)

The definition of the momentum fraction z depends on whether the particles becoming
collinear are in the initial or in the final state. For two final-state particles p; and ps
becoming collinear to form pi2, we have in the limit,

p1— 2p12, P2 — (1 —2)p12, si13 — 28123, S23 — (1 — 2)s123, (6.4)

whereas for a final state particle p; becoming collinear with an initial state parton p; we

have
Siik 2Siik
ik Sik — ik
1—=z2 1—2z

pj — 2pi, pij — (1 —2)pi,  sip — (6.5)

This accounts for the difference between final-final and initial-final splitting functions. The
extra factors 1 — e and 1/(1 — €) account in conventional dimensional regularisation for the
different number of polarizations of quark and gluons in the cases in which the particle
entering the hard processes changes its type.

6.1 Final-final antennae

The quark-antiquark antenna Agg@ has singular limits when the gluon becomes soft or

collinear to either the quark or antiquark:

3,—0

Aggq(l,& 2) “— Sis2, (6.6)
34l1q 1

Agg(j(la?), 2) ‘7_;1 ;PQQHQ(Z)? (6 7)
3402 1

Alga(1,3,2) = —Pyyq(2). (6.8)
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0
a99

in all collinear configurations:

The quark-gluon antenna D has singularities when either of the gluons becomes soft and

24—0

Dggg(17273) 2 51237 (69)
34—0

Dggg(17273) Lo 51327 (610)
2,01, 1

D299(172’3) ad S_mpqg—@(z)a (6.11)

DO 3gll1q 1 P

ag9(1,2:3) — 513 19—Q(2) (6.12)

23, 1

Digy(1,2,3) == S_%PQQHG(Z)' (6.13)

The quark-gluon antenna qu’q"

gularities. There is a singular limit when the quark-antiquark pair of the same type are

having no gluons in the final state, contains no soft sin-

collinear:

2103, 1
W L g ). (6.14)

E°,.(1,2,3)
523

aq'q

The gluon-gluon antenna Fgogg has singular limits when either gluon is soft or any two
gluons are collinear:

Fg?gg(la 273) 250 51237 (615)
34—0
Fggg(17273) Sa 51327 (616)
F_t?gg(la 273) 12)0 52137 (617)
0 24]l14 1
Fuge(1,2,3) — 512 09—G (%) (6.18)
3611 1
Fgogg(l’273) d s13 99—G(2) (6.19)
20134 1
Foye(1,2,3) == S_QBPQQHG(Z)- (6.20)

The gluon-gluon antenna Ggqq has only a singular collinear limit when the quark-antiquark
pair becomes collinear:
2413 1
GY,4(1,2,3) = S—%quﬂg(z) . (6.21)

6.2 Initial-final antennae

0

The initial-final quark-antiquark antenna A, .

has non-vanishing limits when the gluon
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becomes soft or collinear to either the initial-state or final-state quark:

34—0

Aggq(1;372) = 51327 (622)
3||1 1

A00a(153,2) 5 Py q(2), (6:23)
3g124 1

AY ,(153,2) gPWQ(Z). (6.24)

The antenna Ag 4¢ h1as no soft limit since the gluon is in the initial state; it contains singular

collinear limits corresponding to any of the final state partons becoming collinear with the
initial state gluon:

1413, 1
Agg(31,2) == —Pug—a(2), (6.25)
AO 3:1.2 q||3g 1 6.26
gqq(7 ’ ) 593 quG() ( )

notice that in this case, there is no singular limit when the quark and the antiquark in the
final state are collinear.

The quark induced initial-final quark-gluon antenna D has singular limits when

4,99
either of the final-state gluons is soft or collinear to the initial-state quark. Also the

configuration with the two gluons becoming collinear is singular:

34—0
Dg gg(l; 27 3) — 5123 ) (627)
2,—0
Dg gg(l; 27 3) — 5132 ) (628)
Do (1;2,3) %My L (6.29)
Q997" < ) — 10 ngQ() .
0 3411 1
Dqgg(17273) = 513 qg*Q( ) (6-30)
0 ) 20134 1
D} 4s(1:2,3) 5 —Pogal(z). (6:31)

As mentioned above, the gluon-induced initial-final quark-gluon antenna is split into two
contributions, Dg q¢ a0d Dg gg» SO that the former contains only a singular limit when the
quark and the initial-state gluon are collinear while the latter contains both the soft limit

of the final-state gluon and its collinear limit with the initial-state gluon:

12 1

DY ,(2:1,3) == talZ - g—G(2) (6.32)
12

34—0

Dy 4q(2:3,1) == Siza, (6.33)
140134 1

Dggq( 73?1) — 813quHQ( ) (634)
241134 1

Dggq( :3,1) = — 23 vg—G(2) . (6.35)
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The initial-final quark-gluon antennae with two different quark types Eq 77 and E° 7 ad

have no soft limit (as they involve no gluons) and only collinear limits when the two quarks

of the same type are collinear:

2,035 1

Eq 77 (1 2 3) — S—%quHG(Z) s (636)
2,03, 1

BY ,(3:1,2) S—%Pg%@(z). (6.37)

The initial-final gluon-gluon antenna F; g ¢ has singular limits when either of the final state

gluon becomes soft and when any two gluons are collinear:

29H0

Fg(l)gg(l; 27 3) 5123 ’ (638)
34—0
F),0(1:2,3) == Sis, (6.39)
2401, 1
Fs?gg(va??’) = 812P99<—G( ) (6-40)
34011 1
FY,(1;2,3) == —Pygc(2), (6.41)
13
20134 1
Fpyg(1:2.3) = —Pygc(2). (6.42)
23
The initial-final gluon-gluon antennae G¥, and GY . have no soft limits and only a

4,99 9,49
collinear limits corresponding to the quark and antiquark:

1
GS 99(3:1,2) B gpgm—Q(Z)? (6.43)
2,013 1
Ggqq(laza?)) — 823qu—>G('z)' (644)

6.3 Initial-initial antennae

The initial-initial antennae Xj;; , only have singular limits when particle k& becomes collinear
to i or j, or when it becomes soft. All other possibilities are kinematically forbidden.
The initial-initial quark-antiquark antenna Aqg o has no soft limit and only one singular
collinear limit
0 240134 1
Agg, q( ;2) quqHG(Z) . (6.45)
The initial-initial quark-antiquark antenna Aqq 4 becomes singular when the gluon is soft

or collinear to one of the initial-state quarks:

Algg(1,2:3) B S, (6.46)
34ll1q 1

qugu 2:3) L SlqugHQ( z), (6.47)
341127 1

qugu 2;3) "= o wg—0 (2) - (6.48)
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The initial-initial quark-gluon antenna Dgg o has only collinear limits

lgll2g 1
—

Dgg ,(2,3:1) S_HPQ%G(”Z) ) (6.49)
13, 1
DY, .(2,3;1) = el S—BP%G( z), (6.50)

whereas Dggy has both soft and collinear singular limits

Dgg.4(1,2;3) 2 S, (6.51)
3401 1

DY, ,(1,2;3) = SBquHQ( z), (6.52)
34112 1

Dggg(vaa?’) = 593 gy<—G() (6-53)

The initial-initial quark-gluon antenna qu ¢

qu q is singular when the final state quark is collinear to the quark of the same type in

the initial state:

has no singular limits. On the other hand,

1
B0, (1,2;3)

qq’ ,q QQ‘—Q( ) (6'54)

513

The initial-initial gluon-gluon antenna Fgg7 o has both soft and collinear limits

FO ,(1,23) 22 Sy, (6.55)
34ll1y 1

Fig(1:2:3) * —=Pyyea(2), (6.56)
34112 1

Fy o(1,2;3) = -~ vg—G(2) . (6.57)

The initial-initial gluon-gluon antennae G 4 contains only a singular configuration:

GO (17273) 2q||3q

99,9 _P q<—Q( ) (6'58)

523

whereas Ggq 4 has no singular limits.

7. Application of method at NLO

To illustrate the application of the antenna subtraction method at NLO, we derive the an-
tenna subtraction terms for two example reactions: deep inelastic (241)-jet production and
hadronic vector-boson-plus-jet production. Several NLO calculations are already available
in the literature both for DIS jet production [§, and for vector boson production [4].
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7.1 (241)-jet production in deep inelastic scattering

The production of (2+1) jets in deep inelastic lepton-proton scattering can be described on
the parton level by the scattering of a space-like virtual gauge boson and a parton, yielding
a final state with two hard partons (with the extra jet coming from the proton remnant,
not participating in the hard interaction). We limit ourselves to consider the scattering of
transversely polarized virtual photons. The cross section can be written as

d R R
do = / g Eq:fq(g) dé, + f,(€) day, . (7.1)

The partonic cross sections up to NLO are, in turn, given by,

6y = d®a(ky, ky; pgs @) |MOq|” IS (g, k)
+d®o (kg, kg pgy q) 2R(M MO ) IS (g, g

9,99779,99
3)
+dq)3(kg1 ) kgw kqa pq, ‘ ggq‘ JQ( kgl’ kgw k )

3)
+dq)3(kQ1’kQQ’k(Y;pq’ ‘ qqq‘ J2( kq,kQ’k )
+ 57 dPs(ky, kg ks pg @) | MO gy | IS (kg ki K (7.2)
a'#q
6y = d®a(ky, kg; pgr @) | MO ol IS (kg keg)

+dPo(ky, kq; pg» q) 2R(M, M,! MO )JQ(Q)(kqakQ)

9,499 9,99
+dD3(ky, kg, kg pgra) | M, TS (kg kg, k) - (7.3)

9‘1‘1|

For the sake of brevity, the momentum arguments on the matrix elements are omitted.
The first index on the matrix elements indicates the incoming parton, the remaining ones
the outgoing partons. Notice that the amplitudes M? and M! (as opposed to M in
section P]) are not colour ordered, nor colour stripped, i.e. they include colour matrices
in the fundamental and adjoint representation. Matrix elements denoted by |M|? and
%(MJMI)) imply colour summation and average.

Subtractions for infrared real radiation singularities must be performed only on the
three-parton final states. The matrix elements for the real contributions can be expressed
in terms of colour-ordered three-parton and four-parton antenna functions. They read as
follows:

‘ gq‘ - 62 Nog AS(14, 34, 2g) (7.4)

1 N N
‘ ggq‘ 62 5 N3,q NAg(lq’?’gAg’ 2@) + N Ag(lq,4g,3g, 2@)

1 - N
_NA2(1Q739749726) ) (7'5)
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2 ~
= ez N3 g [NF BY(14,3,,44,24)

{ QQQ‘ +{
1 . . . .
_N(C4(1q,3q,4q,2(j)+C4(1qa3q,2(j,4q)

+Cz(1)(4(j7 2(17 1q7 3‘1) + 02(2(17 4‘?7 1(17 3q))

+ Z 62/ N37q 32(3(1/7 1Q7 Qq7 4‘7) s (76)
q/
‘ quq‘ 62 N27!] A2(1Qa3g526) ) (77)
q

2 A ~
‘M;),HQQ‘ = 26(2] Ng,g |:NA2(1Q’39’49’2(]) +NA2(1qa4ga3ga2q)
q

1 - R

_NA2(1q73974g72¢j) ) (7-8)

where

2\n—2 N2 -1 2
Npg=4ma(9%) I 2(1-¢€)Q*, (7.9)
and
_ 2\n—2 2

Nypg=4ma(g™)" "2Q". (7.10)

All the antenna functions used here can be obtained from explicit expressions for the final-
final antennae X and XJ in ref. [l4] by crossing in each case the particle denoted by
M.

The subtraction terms for both quark and gluon initiated processes are a combination
of final-final and initial-final subtractions. We split the quark-induced contributions into
three terms: quark-plus-two-gluon final states at leading and subleading colour, dé° DA and
da 4 and quark-quark-antiquark final state daq’ p- Identical-only quark contrlbutlons to
the matrix elements, involving the antenna CY, have no single collinear limits so they do
not need to be subtracted. Gluon-induced contributions can also be split into leading and

subleading colour, d&*; 4 and dé® .. The explicit expressions for subtraction terms are

g,A"
given by
.S 9 N
da%A = & N37qdq>3(kgla kgza kqapqa Q)E
2 2
X ( q,9192 AQ Gq JQ( )(KG’ kq) + glgquq GQ J2( )(KG? KQ)) ’ (7'11)
N 1
do‘(iﬁ = _62 N37qdq)3(k91’kgz, kqapq, )ﬁ
2 2
(Ag 914 AQ 92Q JQ( )(k92’KQ) + AS 929 AQ 91,Q J2( )(kgl ) KQ)> ) (7.12)
dé-iB = N3,qd(1)3(k k kq yPgy q [Z q GQ/ /J2( )(KQ/,]C(T)
Np 9
5 (B g Ab g 57 (K ke) + By A g I3 )(Kg,k‘q)>] , (7.13)
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= )€l N3 yd®s(kg, kg, kgipg, ) N

q
(2) 0 (2) _
X( gquQGqJQ (K kq) + gquGqQJ (kq’KQ)
2 2
+ DS q9 A(c]g Gq JQ( )(KG7k )+Dg quG Qq J2( )(KQ7kQ)> ) (7'14)
1
k: kg K
Zq: G+ Pgs )N

1 2) 0 40 (2)
X<2quqAQgQ‘]2 (k97KQ)+2A9qqAQgQJ2 (kQ’KQ)

2
+A29¢1A2 Q0 Jz( )(KQaKQ)> (7.15)

In the above, X7 y and X, 17 denote three-parton antenna functions with momenta I, .J
obtained from a phase space mapping. The combination of these subtraction terms with
the real matrix elements containing three partons in the final state is finite in all soft and
collinear limits and can be integrated numerically over the three-particle phase space.

On the other hand, the analytical integration of the subtraction terms over the factor-
ized phase space can be carried out using the results of section [l.J. For the poles of the
integrated terms, we obtain:

469 4+ 465 5 + o5 = —2 SN (10(0) + 1(s)) - ;[Ig};(u)
N (10 5(0) + 1) (5)) | 468 ,0)
——= | ==Cpp\Y(x)ds}(xp,q)
W (x)d6 ] (xp,q) + O("), (7.16)
Q63 +d65 5 = 22 [N (1<1>< )+ IP(W) — 10 ()

+Np (T p(0) + 1) o)) | a6 (p.q)

dz1 0 .
s s <N (0)( )"‘NFPE;Q),F(@")) daf(:vp,q)
dr 1 ~B ~B 0
-~ TFp ) (daq (xp’ q) + do'q (xp’ q)) + 0(6 ) )
(7.17)
where Cp = (N? — 1)/(2N), Tr = 3 and the Born cross sections are given by
. 2)
daf(p, q) = do kq;p.q ‘ gq‘ J2( kg, kq), (7.18)
. 2)
AP (p,q) = d® k:q, ks 2y @) |MO oo I (Kg, kg). (7.19)

The poles contained in the operators IZ(;) match exactly the ones appearing, with opposite
sign, in the interference of the renormalized one loop amplitudes with the Born ones.

The remaining poles correspond to the mass-factorization contributions. Thus, combining
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the integrated subtraction terms with the virtual contributions and the mass-factorization
counterterms, we obtain a finite contribution, free of any poles in ¢, that can be integrated
over the two-parton phase space.

7.2 Vector-boson-plus-jet production in hadronic colliders

The second example we will consider is the production of a vector boson V (V = ~, Z,
W) plus a hadronic jet in a hadronic collision. This process is mediated by the scattering
of two partons into the vector boson and one hard parton. The cross section is given by

dé1 d
do = gg { ZZJ: [fai(€0) fg;(€2) + fa.(€1) fq; (&2)] dbgyq
+ Z [fqi(gl)qu (52) + fqz'(gl)fqg' (52)] da-Qin
,J

+ Z [(fq:(&1) + fa,(61)) fg(&2) + fo(&1) (fo,(&2) + f4,(€2))] dbgyg

+fg(&1) fg(&2) d&gg} . (7.20)

Again we express the partonic cross sections in terms of color ordered antennae. We first
write:

2
A 1
d64,q, = d®2(kg, 4;Pg: Pg) ‘ngj,g‘ Jl( )(kg)
1 0
+dq)2(k97 4a; p‘I’p‘?) 2§R(MQ¢T¢Y]'79MQJ@J'79

2
2
T2 (kgy  kgy)

) It (ky)

. 0
+dq)3(kg17 kgg , 45 pq7p(j) ‘Mqiéj,gg

2 (2
+Zd®2(k(bk(j7q7p(bpq) ‘Mt?iqj,chjl Jl( )(kq37kq4) ’ (721)
k,l
. 2 (2
daQin = qu>3(ka’kQI’q;in’pq]') ‘ngﬁqkql J1( )(qu,kq4), (7.22)
k,l

2
T (ky)

b4y = Y dDa(kqg, ¢ Pg, Pg) ‘Mﬁg,qj
j

2
+ Z dq>2(kqa Q7 pq,pg) 2%(Mq1jg,q] M(?ig,qj) Jl( )(kQ)
J

2 2
I (kq, ky)

+ Z d®3(kq, kg, ¢ Pg, Pg) ‘Mé)ig,qjg
J

2 9
TP (kg kg) | (7.23)

R 0
dége = Zd@g(kq,kq,%pgupw) ‘Mgqui‘jj
i7j

where we have omitted again the momentum arguments of the matrix elements. The matrix
element for the partonic process ab — cdV is given by My, ¢ and the momentum of the
vector boson, appearing in the phase space measure is denoted by g¢.
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The real contributions are given by

2
‘MQLQj,g = |Cl.7| (U +(Z )quqA?;(an galq) (724)
2
‘Mé)ig,qj = |Cyj* (v + af) N1,g9 AS(jg: 19, 1) (7.25)
MO N = O (0 4+ a2) 2 N [N A 10220 70) + N A 291 10074
q:95,99 v Ui az)z 2,q9 4(3(17 g gvzq) 4(]qa g gan)
1 7 “ i
_N A4(an 1ga2gaZQ)] ) (726)
2
My, aua :szqq{%l (Cisl* (vF + af) B (g kas lgy ig)
+6ij |Ckl| (vl%_{' z) 4(1]( qa]qalqa q)
+5ﬂ ‘Clk’ ( z2+ ?) 2( Q7]q7 qan)
+di |le| (U +a) E(Jq, q,Zq,lq)
+010k 2R(Cii O <Uz‘ vk BY v (g kgs lg, ig) + ai ax BY 4 (g, kg, lg, 3@))
+0ik051 2 R(CCL) <Ui v; B v kg, Jg, U3, i) + i a; B 4(kq, g, lg, %))

2
t¥ Sikdk1 |Cij)* (02 4 a2) C(Ggs kg lg ig)
105 |Cikl® (02 4 a2) (ks Jgs g ig)

2
+— 8,01 |Cij)* (v + af) CF (ig, lg, kq» Jg)

N
2
+N 5z‘j5z‘k |Cjk| (U +aj )C4(lqa1qakqajq)} (7.27)
0,
0 kl
‘Mqiqp%m = Nagq <1 - 7)

><{5ﬂ ‘Czk’ (U +a; )B4(kq7lq7]q72q)

+05k |le| (v + aj )B4(lq’kq’zq’]q)

000 2R(CCLy) (vsvy By gy Ly, T i) + 01 05 B 4k lg»Ga i) )

0

+N2,qq (52] (1 — (5kl) + %)
X{5jk Cal® (v} + a?) BY(lg, kg, Jg. i)

+d4 |Cjk| (v + aj )B4(kq’lq’zq’]q)

+051041 2 W(Ciicjj) (Ui v BY v (lg, kg, Jg, 1) + ai a; B 4(lg, kg, Ja, %))

WOk |Ci|? (0F + a?) CY (ig, Jg» kg, 1g)
2
N 031051 |Czk| (U +a; )C4(kqalq’zq’3q)

2
N i |Cal® (vF + a?) C{(lg, kg, g, Jg)
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2

7 S |Gl (0 + a3) O gy gk o) } (7.28)

‘ golql',gij' = ‘CU’ (v + af) Nagg {NA4(Jq71 1 2g,19) + N A}(jg» 24, 19, 1)
Al 1y 20,7)] (7.20)
‘ 192,03 | — |Cw| (v} + af) Nagg [NA4(% 129, J7) + N A} (ig, 24, 14, jg)
—%A (g 1+20. 52 (7.30)
where
Npgq = Nugq = dmay (3" 2va (1—¢)Q?, (7.31)
Ny gg = dTay (g2)"*2% Q?, (7.32)
Npgg = 4may (92)”—2ﬁ - i - Q?, (7.33)
with the coupling constants given by
av:a:g’ awz%jvx/i, azz%f\/i. (7.34)

The vector and axial couplings of the quarks to the vector bosons are

2 1
vzzg 03:—5, ay =a) =0,
8
vle—gsm Ow vf:—l—i——sm Ow afz—l, ag =1,
1 1
oV =l = aV=al = -—— (7.35)

The flavor mixing matrices, C;; are given by d;; in the case of v and Z production and by
the CKM matrix in case of W production. Finally, the colour ordered antenna functions
appearing in egs. ([.24) to ([7.30) can be obtained from explicit expressions for the final-final
antennae X?? and X{ in ref. [[4] by crossing the particles denoted with hats.

The subtraction terms for this process involve initial-initial and initial-final antennae
as there are at most two partons in the final state, final-final antennae are not needed.
Only antennae A and BY contain singular configurations and, thus, require subtractions.
We find the following subtraction terms, classified according to the partonic reaction they
must be combined with,

1
2/ 2 2
daqij .99 = |Cyj|” (v +a7) 5 N2,qq d®3(kg, , kgy» 45 Pgs Pg)

(1) 0 0 MW (g
x{N [ v Ao I (KG) + DY 4,0, A0 5 o I (K )]

1 1 L
_N [Agiqﬁgl A%i@j,G2 Jl( )(KG2) + Agzq] g2 A(C)gin,Gl Jl( )(KG1 )] } 7(7-36)
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~S '
daQi‘jj7Qk‘jl - Z Naqq d®s(kg, kg, ¢ Pg, Pg)
k,l

1
2 1
{8 Cyl* 07+ ad) 5 (B, g Augy 0 91 (Kc)
0 0 (1)
+E@qu§ﬁf AQin7G Jp (KG)>

2 1

qj
1
+ou Cal* (vF + a?)Egiq;,qk Ag,6.0: Ji )(KQZ)}, (7.37)
~ S .
daqiqj,qqu = Z N2 gq dP3(kg, , le’Qap(Ii’pq]')
k,l

X{ (1 2 > 5Jl |Cl/€|2 (vlz (Z?)qu7qlq;€ %G, Qk 1( )( k)
(S EO J li(?
< _kl> 6ik |C][|2 (’UJ2 + (13) ’ quG,Ql 1(1)( l)

9 4,9k 4]

5
+ <5z‘j (1= 0u) + %) Ojk 1Cal® (07 +a?) B, 4 Ao, 1 (Kay)

95,919]
Okt 1
+ <5z‘j (1 =) + 7) S 1Cikl* (v} + af) Eq, . 20,6, Ji )(KQk)} ;
(7.38)
da—qsig,qjg = Z |Cij|2 (UZ2 +a12)N2,qg dq)B(kqakgaq;pq,pg)
J
0 0 (1) 0 0 (1)
X{N [ing,g AQic; N1 (Kq;) + Dy gq, Ao, /1 (Kay)
0 0 (1)
+D0 40 A5 o) (KG)]
L (40, g0y 420, 0K + A0, 42 o 70| L. (739)
N | aig9 FQig.Q; U1 Q; 419,45 “*Q:Q;,G V1 G ) :
465 ggia; = D ICi5[° (vF + af) Nagg A®s(ky, kg, 63 Pgy » Pgo)
,J
N>—17., 0 (1) 0 0 (1)
X N |:D91927Qi AQiG,QJ‘ ‘]1 (KQ1)+D91927%' A i G,Qi Jl (KQz)} ) (7‘40)

Antennae of the form X;;x and Xk correspond to antennae where the momenta of the
particles denoted with capital letters are obtained by initial-final and initial-initial phase
space mappings respectively.

The integrated form of the subtraction terms can be obtained inmediately using the
results in sections .4 and f.3. The singular pieces of these terms are then given by

) s 1 )
dat}giqj,gg = _25 {N (Ig? (t) + It(zlg) (u)) N Iéi,)(é’)] quEqu (Pg> Pq)
as [drl . )
—2= [ Sl @) (462, (2 pg,pa) + 62, (g, 2pg) ) + O(0) , (7.41)
A Qg A
dafi(ij,qkéz = _25 {NF <Iélg),p(t) + Iglg),p(u) } daéjqj (Pgs Pg)
as [drl 0 B B 0
_% ?E CF pgq) (1’) <d0-qig(pqa xpg) + dgqjg(p(j7 .%'pg)> + O(G ) y (742)
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550 g = 5 | —— Crpg (@) (d&€ (pq,m pg) + 46y ,(pg, @ pg)> + O, (7.43)
G = ! 1 (1
Wiy = 2o {N (I‘(Jg)(“) +It(19)(3)> ~ Lz (t)
1 A~
+Np <Igg)F( )—l—Iég)’F(s)) } 65 (pgpy)

d_xl

o 7 E CFpgq)( )dO’ (quapg)

dx 1 R
~ (N (@) + N ol (@) o8y (04, 7 py)

/d—xlTFp Zda (pg>zpg) + O(°), (7.44)

) dx 1 . .
600 qia, = /——2TFP V(@) Y (A6 (xpg,pg) + A2 (217, pg)) + O(0),

(7.45)

where the Born cross sections are given by

q

A6l =" d®a(kqg, ¢;pg,pg) [M])
j

A611y, = A®s(ky, 4504, pe) | WM‘ T (k). (7.46)

* 0%, (7.47)

99,95

)

the ones associated with the Altarelh—Parisi kernels drop out once combined with mass-

Again, the poles in the operators I( are canceled by the virtual contributions whereas

factorization counterterms.

8. Conclusions and outlook

In this paper, we have generalized the antenna subtraction method for the calculation of
higher-order QCD corrections to exclusive collider observables to situations with partons
in the initial state.

The basic ingredients to the subtraction terms, the antenna functions, can be ob-
tained from the known final-state antenna functions by simple crossing. We derived the
factorization of an multi-parton phase space into an antenna phase space (required for the
analytic integration of the subtraction terms) and a reduced phase space of lower multiplic-
ity, for antennae with one or two hard radiator partons in the initial state (initial-final and
initial-initial antennae). Explicit phase space factorization and parameterization formulae
were presented for NLO and NNLO calculations. We derived all integrated initial-final
and initial-initial antennae relevant at NLO, and demonstrated their application on two
example calculations.

A major advantage of the antenna subtraction method is its straightforward extension
to NNLO calculations. Our results are a significant step towards NNLO calculations of
hadron collider observables. Using the phase space factorizations presented here, NNLO
subtraction terms for jet production observables at hadron colliders can be constructed
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from known building blocks. Their analytic integration over the antenna phase spaces
relevant to NNLO calculations is still an outstanding issue. It is however anticipated that
usage of techniques similar to those applied for the integration of the final-final antennae
will help to perform these integrals in a systematic and efficient way.

First applications of the method presented here, once the corresponding NNLO in-
tegrated antennae are available, could be NNLO calculations of two-jet production or
vector-boson-plus-jet production at hadron colliders, and of two-plus-one-jet production
in deep inelastic scattering. Further extensions of the method could include radiation off
massive particles, thus allowing the NNLO calculation of top quark pair production at
hadron colliders.

Another important extension of subtraction methods is the combination with parton
shower algorithms [@], thus allowing for a full partonic event generation to NLO accuracy.
This task has been fully accomplished so far only for one QCD subtraction method [4].
While fixed order NLO calculations are independent of the subtraction method used, there
can be a residual dependence on the method in matched NLO-plus-parton-shower calcu-
lations, since unintegrated and integrated subtraction terms are treated differently in the
parton shower. With the formulation of the antenna subtraction method for initial state
radiation presented here, it will become possible to construct antenna-based parton showers
for hadronic collisions.
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